$B l$ in temus of FF cuve. (afer Le Bras).
Recall in Colmar paper, fix $C=\hat{C}$ in chow $0 \quad k$ residure fied. C perfectoid C^{b} tilt. Jiedong's tolk:
 cantion \underline{Q}_{q}, G_{a} and stable moder extersions.
Goal of toden's talk:
ideretlfy $B e \times \overparen{B e}$ with subcat of $D=D^{b}(\operatorname{coh}(x))$.
$X=$ ubsolute Foagne-Fortaine enure $/ C^{b}$
§ Facts about (rebarive, odic) IF cunces
$S=S_{p a}\left(R \mid R^{+}\right)$affinail perfectaid $\in \operatorname{Rerf}_{c} b$

$$
Y_{S}=S_{p a} W\left(R^{+}\right) \backslash V(p[\infty]) . \quad \sigma \in R^{+} \text {a precodo-uct. }
$$

$T_{S}=$ anghic adic spoce.

$$
-\bigcup_{m, u \geqslant 1}\left\{\left.x \in T_{s}|\quad| w\right|_{x} ^{n} \leqslant|p|_{x} \leqslant|w|_{x}^{\frac{1}{m}}\right\} .
$$

$=: \bigcup_{m, n 21} T_{s, m, n}-$ rational open subsetso of spa W(R). (affrumid Fate)

$$
B(S):=O\left(Y_{S}\right) .
$$

$\varphi \in W\left(R^{+}\right)$iveluess $\varphi G Y_{S}$ free \& rqualy discomiunus
$X_{S}:=Y_{S} / \varphi^{2}$ relative FF cune oove. S.
$X:=X_{S_{p}}\left(C^{b}, O_{c}^{n}\right)$. obohite $F F$ cumce. sudiks by Faygues - Foricine. $B:=B\left(S_{p a}\left(C^{b}, O_{C}^{b}\right)\right)$ was carsefuly . Stadies. $B=B_{(0,1)} K_{\text {oji }}{ }^{\prime}$ leacie $P=\underset{d=0}{\oplus} B^{\varphi=P^{+1}} \quad$ groded dyctinu $/ B^{\varphi=\pi \lambda}=Q_{p}$.
 $\exists X \longrightarrow X^{\text {sch }}$ morphism of loc. riy spaces.

Thin (Kedloyn-Lin). $X \longrightarrow X^{\text {sch }}$ induces an equivalence of
$\operatorname{Bm} x^{\text {sch }} \xrightarrow{ } \operatorname{Bun} x$ and induces. isomophisen on cohomoluyg gaps of vector bundles (GAGA).
(D. φ_{D}) isocigral $/ k$. simple of stope $-\lambda$.
define $O(\lambda)$ to be the v.b. associated with.

$$
\begin{aligned}
& \bigoplus_{d \leq 0}^{(\oplus)}(D \underset{w(k)[p]}{\infty} B) \xrightarrow{\varphi=p^{d}} \text { diagonal. } \\
& \leadsto H^{0}(x, O(\lambda))=B^{p^{h}=p^{d}}(=0 \quad \lambda<0) . \quad \lambda=\frac{d}{h},(h, d=1 \\
& \operatorname{Hom}(O(\lambda), O(\mu))=H^{\oplus}(X, O(\mu-\lambda))^{\oplus m}(=0 \text { when } \lambda>\mu) \text {. }
\end{aligned}
$$

The (Faygues-Foremine).
Every vector bundle ε over $X^{\text {Shh }}$, ヨuoncan. isomopphic to.

$$
\varepsilon \simeq \bigoplus_{\lambda \in \mathbb{Q}} O(\lambda)^{m_{\lambda}(\varepsilon)}
$$

Above the \Rightarrow given ε multi set of $\lambda \in \mathbb{Q}$ with $m_{\lambda}(\varepsilon) \neq 0$ Called the slopes of ε.
ε is called semi-stable of slope λ if it only as slope λ.

$$
\begin{aligned}
& H^{0}(x, \varepsilon) \longleftrightarrow \varepsilon
\end{aligned}
$$

 replaced [by pointuise sis. slope 0 . by a the of Kedlaya-Lin. and: $H^{0}\left(X_{S}, V \otimes O_{X_{S}}\right) \simeq \underline{V}(S)$.
\star Set of closed pts of $X^{\text {sch }}$
$\left|X^{\text {Sch }}\right| \longleftrightarrow$ Cuntilts of C^{b} in char 0) \sim.

$$
\begin{aligned}
& x \\
& \text { s.t. } C_{x}:=x(\pi) . \\
& \text { sch } B_{d R}^{+}\left(C_{x}\right) .
\end{aligned}
$$

$\infty \quad \longleftrightarrow \quad C$ as untle of C^{b}.
Imk: Similar for $X_{S} ; X_{S}$ is "the undelili of untiltes of S "

$$
F \in \operatorname{Coh}\left(X^{s c h}\right) \quad F \simeq F_{\text {tor }} \oplus F_{\text {free }} .
$$

define sope of Fror to be ∞.

$$
\begin{aligned}
& \delta \operatorname{Coh}(X)^{-} \quad X=X^{\text {sch }} \\
& D=D^{b}(\operatorname{Coh}(X)) . \\
& \operatorname{Coh}(X)^{-}=\left\{F \in D \left\lvert\, \begin{array}{l}
H^{i x}(F)=0 \text { if } i \neq 0,-1 . \\
H^{0}(F) \text { as slopes } \geq 0, H^{-1}(F) \text { has slopes }<0
\end{array}\right.\right\} .
\end{aligned}
$$

Prop: Coh $(X)^{-}$is a haure of $D(\exists t$-str $)$.
They is that Hom $($ slope ≥ 0, slope $<0)=0$.
$\leadsto \operatorname{coh}(x)^{-}$is an abalion categuy.

$$
\begin{aligned}
\forall F & \in \operatorname{Coh}(X)^{-} \\
& H^{-1}(\mp)[1] \rightarrow F \rightarrow H^{0}(F) \pm 1
\end{aligned}
$$

is an exent triagle in D.
actualy: $0 \rightarrow H^{-1}(F)[1] \rightarrow F \rightarrow H^{\circ}(F) \rightarrow 0$.
is exact in $\operatorname{Coh}(x)^{-}$., and

$$
\begin{aligned}
& \text { Ex }{ }^{1} \operatorname{coh}(X)^{-}\left(H^{0}(F), H^{-1}(F)\left(H_{1}\right)\right. \\
& \left.=\operatorname{Ext}_{D}^{1} \text { (} H^{-}(F), H^{-1}(F)[1]\right) \text {. } \\
& =\operatorname{Ext}^{2} \operatorname{coh}\left(H^{0}(\mp), H^{-1}(\mp)\right)=0 \text {. since } X \text { cunve } \\
& \leadsto F \neq H^{-1}(F)[1] \oplus H^{-}(F) \text {. } \\
& F=\left(F^{-1}, F^{0}\right) \quad F^{-1}=H^{-1}(F) \quad \text { slope }<0 \\
& \text { 平 } 0 \text { tiff) sbpe } \geq 0 \text {. }
\end{aligned}
$$

Stoyn. $\operatorname{coh}(x)^{-} \& \operatorname{coh}(x)$ has same offects. (up to ism) dout orfferent usurphism
e.g. $H_{\text {mal }}(x)\left(\left(0, F^{0}\right),\left(\xi^{-1}, 0\right)\right)=0$.

$$
\begin{aligned}
\operatorname{Hom}_{\operatorname{Ch}}(x)-\left(\left(0, F^{0}\right),\left(\xi^{-1}, 0\right)\right) & =\operatorname{Hom} D\left(F^{0}, \xi^{-1}[1]\right) \\
& =E_{x}+\frac{1}{\cos (s)}\left(F^{0}, \xi^{-1}\right) \neq 0
\end{aligned}
$$

§Main reablt.
Def-Lemues: \exists well-defined functor.
$T: \operatorname{Coh}(x)^{-} \rightarrow \nexists e^{\sim}$

$$
F \simeq\left(F^{-1}, F^{0}\right) \longmapsto\left(S=S_{p}\left(R, R^{+}\right) \in R_{a} f_{c}, p_{1} \mapsto H^{0}\left(x_{s}, F_{s}^{0}\right) \oplus H^{1}\left(x_{s}, F_{s}^{-1}\right)\right) \text {. }
$$

If: $S \longmapsto X_{S}$ is functorid.
$S \rightarrow S_{p a c} C^{6} \longmapsto\left(X_{s} \longrightarrow X\right) \quad F_{s}^{*}$ the pull back of F^{*}.
We will see. $H^{i}\left(X_{s}, F_{s}\right)$ are $\mathbb{Q}_{p}-$ v.s.

$$
F \rightarrow \mathcal{y} \leadsto T(F) \rightarrow T(\xi) \text { aroomeci } x_{p} \text {-linear. }
$$

T induces $\operatorname{coh}(x)^{-} \simeq k e \approx \widetilde{\beta V}$
(1). $\mathcal{F}_{1}=O_{x} \stackrel{T}{\mapsto}\left(s \mapsto H^{\circ}\left(X_{s}, O_{x_{s}}\right)\right)=Q_{p}$.
(2): $\quad S \in \operatorname{Perff}_{c}^{b} \longleftrightarrow S^{\#} \in \operatorname{Pofc} c$.

$$
c: S^{\#} \longrightarrow X_{S}
$$

and $H^{i}\left(X_{s}, l_{*} \mathbb{B}_{\text {dik }, s^{*}}^{+} / t^{k}\right) \simeq H^{i}\left(S^{\#}, \mathbb{B}_{d k}^{+}, s^{*} / t^{k}\right)$
in penticular, $T\left(l_{\infty}, *\right)=G_{a} . \quad\left(B_{d_{d s}}^{+} / t \approx O_{s^{*}}\right)$.
(3) To check, Ben

$$
\begin{aligned}
& K_{0}\left(\operatorname{Coh}(x)^{-}\right) \cong K_{0}(\operatorname{Coh}(x)) \simeq K_{0}(\operatorname{Ban} x) \text {. } \\
& {[F] \mapsto\left[H^{\circ}(F)\right]-\left[H^{-1}(F)\right] \quad l^{\mathrm{rank}} \oplus \operatorname{det}}
\end{aligned}
$$

$$
\begin{aligned}
& {[O(n)] \longleftarrow \text { n } K_{0 j} \text { 's lectme notes. }}
\end{aligned}
$$

So it is enough to check.

$$
T\left(\theta_{x}\right), T\left(\theta_{x}(1)\right) \in \notin l .
$$

$H^{\circ}\left(X_{S}, O_{x_{s}}\right)==\quad Q_{p}$
Lemma: Sympathetic C-algebras forms a basis for. Peel, pret.
8: Come' paper. "sympathetic closure". (Yoongqan's talk).
$\xrightarrow{\text { will see }:} 0 \rightarrow \underset{\left(Q_{p}\right.}{ }(R) \rightarrow \mathbb{U}_{1}(R)=B(R)^{\varphi=p} \xrightarrow{\theta} \mathbb{V}_{n}^{1}(R) \rightarrow 0$

Thu. T induces ${ }^{\text {exact }} \operatorname{Coh}(x)^{-} \simeq B e \simeq e^{2}$
(1) T exact. $\operatorname{Coh}(x)^{-} \longrightarrow \widetilde{B C}$

Assume (1). $\forall F, \mathcal{F} \in \operatorname{Coh}(x)^{-}$
T induces
(*) $E_{x t}{ }^{i}(F, g) \longrightarrow \operatorname{Ext}^{i}(T(F), T(g))$.
$(*)$ is isom. $i=0 \Rightarrow$ fully färdfuluess we know $T\left(\mathcal{O}_{x}\right)=\mathbb{U}_{p} \quad T\left(i_{\infty}+C\right) \simeq G_{a}$. by definition of $\not B C$, it is enoch to show.
(*) is is om $i=1$.

Lemme. (*) is is om for $\forall F, y \in \operatorname{Coh}(x)^{-}, \quad i=0,1$.
Lemma. (*) is isom for. $\mathcal{F}, \mathcal{G} \in\left\{\underline{Q_{p}}, G_{a}\right\}, i=0,1,2$. If: one-by-one compare with Ext t^{i} computed by Jiedong.
egg. $\quad E_{x t^{2}}=0$,
eeg. $E_{x t}{ }^{1}\left(i_{\infty, *} C, O_{x}\right)=H^{\circ}\left(X, \varepsilon_{x t}{ }^{1}\left(i_{\infty_{*}} C, O_{x}\right)\right)=C$.

$$
\begin{aligned}
\operatorname{Hom}\left(i_{\infty}, *, O_{x}\right)=0, E_{x t}^{1}\left(i_{\infty}, C, O_{x}\right) & =i_{\infty} . C \\
\operatorname{Hom}_{x}\left(O_{x}, i_{\infty, *} C\right) & =\operatorname{Hom}_{B-\text { pins }}\left(\left(B_{e}, B_{d R}^{+}, i d\right),(0, C,(0))\right. \\
& =\operatorname{Hom}(C, C)=C .
\end{aligned}
$$

\Rightarrow Lennu. if $F \& \mathscr{G}$ firs

$$
0 \rightarrow V \otimes 0_{x} \rightarrow F(G) \rightarrow i_{\infty,+} W \rightarrow 0
$$

then. $E_{x t}{ }^{i}(F, G) \simeq E_{x t}{ }^{i}(T(F), T(\mathcal{H})) \quad i=0,1,2$. by five lemur.
for general $F, \xi \quad i=0,1$. (*) isom follows from
Lemme: $\forall F \in \operatorname{Coh}(X)^{-} \exists$ exact seq in $\operatorname{Coh}(x)^{-}$

$$
0 \rightarrow V \otimes O_{x} \rightarrow F^{\prime} \rightarrow F i \rightarrow 0
$$

with $F^{\prime} \in \operatorname{Coh}(X)$, firs into

$$
\mathrm{O} \rightarrow \mathrm{~V}_{\infty} D_{x} \rightarrow F^{\prime} \rightarrow i_{\infty}, * W \rightarrow 0
$$

exact in $\operatorname{Coh}(x)$.
of: Clesanfication thu. $F \in \operatorname{Coh}(x)$.

$$
F^{1} \simeq\left(\oplus(O(x)) \oplus i_{s a, *} \frac{B_{d R}^{+}(C x) / t^{k}}{t^{k}}\right.
$$

Ont details. Lemme. 3.7 .
e.y. $0 \rightarrow O_{x}(-k) \xrightarrow{x t^{k}} O_{x} \rightarrow i_{\infty, *} B_{d k}^{+} / t^{k} \rightarrow 0$.

$$
\leadsto \quad 0 \rightarrow O_{x} \rightarrow i_{\infty}, B_{\text {da }}^{+} / t^{k} \rightarrow O_{x}(-k)[1] \rightarrow 0 .
$$

Remains to show T is exact.
$\theta \in$ Perfce $^{b} \leadsto X_{s}$. is functional.
$S \rightarrow S^{\prime}$ proem (covering) $\rightarrow X_{s} \rightarrow X_{s^{\prime}}$ is also

$$
\leadsto \tau: \underset{\text { proèt }}{\prime \sim} \rightarrow\left(\text { Perfch, pret }^{\prime}\right)^{2} \simeq\left(\text { Pelf, proēt }^{2}\right)^{\sim}
$$

$D \ni \mathbb{F} \mapsto \mathbb{R}_{\tau_{*}} \frac{\mathbb{F}}{}$ complex.mplex of sheaves.
Observation: $0 . F \in \operatorname{Coh}(X), \mathbb{R}^{i} \tau_{e} F$ is the sherefification $S \mapsto H^{i}\left(X_{s}, F_{s}\right)$

2. $T_{\text {exact }} \Leftrightarrow \mathbb{R}^{1} \tau_{*}=0$ on $\operatorname{Coh}(x)^{-}$.

Concretely. $2 \Leftrightarrow \forall F \in \operatorname{Coh}(x)$.

1) if slopes of $F \geq 0, R^{1} \tau_{*} \mp=0$
2) if slopes of $F<0, R^{0} \tau_{*} \mathbb{F}=0$. sheaf.

If classification the.
can assume $F=O(\lambda)$

$$
F=l_{x, \infty} B_{d d}^{+}\left(C_{x}\right) / t^{k} \quad V \cdot H^{1}\left(X_{s}, F_{s}\right)=0
$$

recall $T_{s}=\bigcup_{m, n s 1}, m, n$

1) each $T_{s, m, n}^{m, n s 1}$ affinoid sonspuffectoid (Kedtaga-Hansen).

$$
\Rightarrow H^{i}\left(Y_{s, m, n}, \varepsilon\right)=0 \quad \varepsilon \text { v.b. }
$$

2). Tranairition maps. $O\left(Y_{\text {s,m,n }}\right)$ has dance inge.
last week. $\Rightarrow R^{2} l_{\text {inn }}=0$ Q. $H^{i}\left(Y_{s}, \varepsilon\right)=0 . i>0$ $H^{i}\left(X_{s}, \varepsilon\right)$ is computed by

$$
\left[O(\varepsilon) \xrightarrow{\varphi-i d} \underset{c^{n}=p^{+}}{ }(\varepsilon)\right] \quad H^{i}\left(X_{s}, \varepsilon\right) \text { are }\left(Q_{p}-v . s\right.
$$

- $H^{0}(O(\lambda))=B(S)^{\varphi^{n}=p^{4}} \quad \lambda=\frac{d}{n}$ when $\lambda<0$
Newton polygon method $\Rightarrow B(S)^{\varphi^{h}=p^{+1}}=W\left(R^{+}\right)^{\varphi^{h}=p^{d} \text {. }}$

$$
\stackrel{d<0}{=} 0 .
$$

- $H^{1}(O(\lambda))=0 . \quad \lambda>0$.
replace X_{S} by $X_{\mathbb{C p}_{p^{k}}, S}$. reduce to show $\lambda=d \in \mathbb{Z}$.

$$
B \xrightarrow{i d-p^{-d} \varphi} B
$$

sujective. $K L$. Ropp 6.2.2. 2

- $H^{1}\left(X_{S}, O_{x_{s}}\right)=0 \frac{\text { if } S=\operatorname{Spe}\left(1, R^{2}\right) \text { is sympathetic. }}{\text { apply } P\left(X_{s}, \rightarrow\right)}$ to.

$$
0 \rightarrow O_{x_{s}} \xrightarrow{x t} O_{x_{s}}(1) \longrightarrow i_{\infty} * O_{s^{*}} \rightarrow 0 .
$$

exactness from. $S=\operatorname{Spa}\left(R, R^{+}\right)$sympetheric.

$$
t \epsilon \cdot H^{0}\left(x_{s}, O_{x_{S}(1)}\right)=B(S)^{\varphi=1}
$$

and FES for symparthic. nigs.

